Digital Mapping & Spatial Analysis

Graduate Community of Learning April 17, 2018

Zach Silvia Rachel Starry Andrew Tharler

Workshop Agenda

- 1. Visualizing Spatial Data (Andrew)
- 2. Storytelling with Maps (Rachel)
- 3. Archaeological Application of GIS (Zach)

- Map, Interact, Analyze
- Example 1: Bryn Mawr dining options
- Example 2: Carpenter Carrel Project
- Example 3: Terracotta Altars from Morgantina

Leaflet: A JavaScript Library

http://leafletjs.com

Storytelling with maps #1: OdysseyJS (CartoDB)

<u>Platform</u>

Germany's way through the World Cup 2014

Tutorial

Storytelling with maps #2: Story Maps (ArcGIS)

Platform

Indiana Limestone (example 1)

<u>Ancient Wonders</u> (example 2)

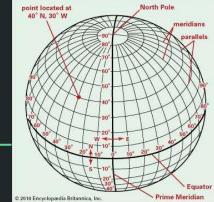
Mapping Spatial Data with ArcGIS

- Mapping in GIS Basics
- Archaeological Applications
- Topographic Applications

Mapping Spatial Data with ArcGIS What is GIS - Geographic Information System?

A geographic information system (GIS) is a framework for gathering, managing, and analyzing data. Rooted in the science of geography, GIS integrates many types of data. It analyzes spatial location and organizes layers of information into visualizations using maps and 3D scenes. With this unique capability, GIS reveals deeper insights into spatial data, such as patterns, relationships, and situations - helping users make smarter decisions. - ESRI GIS dictionary.

- ArcGIS by ESRI industry standard, expensive, intuitive functionality, PC
- Q-GIS open source, industry standard, less than intuitive, Mac and PC
- GRASS developed by the US military, open source
- AutoDESK counterpart to AutoCAD for topography

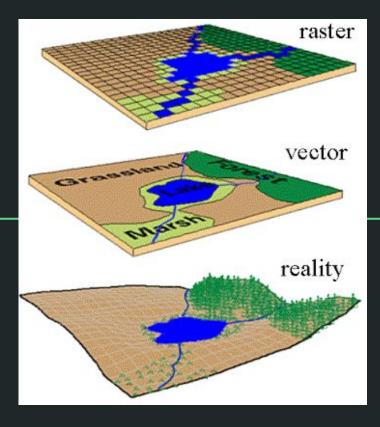

Types of Spatial Data in ArcGIS: Basics

Every feature on the planet has its own unique latitude and longitude coordinates:

Houses, trees, streets, archaeological finds, you!

How do we collect this information?

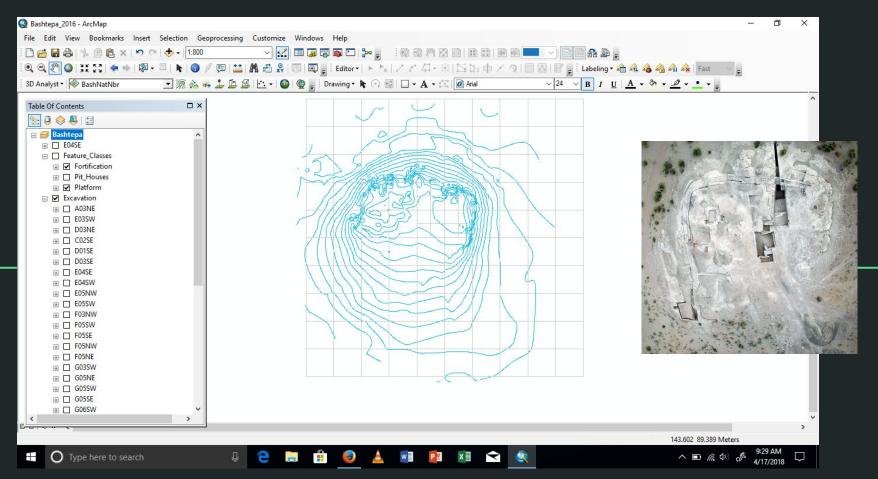
- Remote Sensing: Aerial photography, satellite imaging, LIDAR
- On-site Observation: total station data, ground penetrating radar, GPS



Types of Spatial Data in ArcGIS: Basics

Raster vs. Vector projections

Raster Maps: "a representation of the world as a surface divided into a regular grid of cells. Raster models are useful for storing data that varies continuously, as in an aerial photograph, a satellite image, a surface of chemical concentrations, or an elevation surface"


Vector Maps: a representation of the world using points, lines, and polygons. Vector models are useful for storing data that has discrete boundaries, such as country borders, land parcels, and streets.

Source: giscommons.org/introduction-concepts

Vector topography vs. raster, aerial topography at Bashtepa, Uzbekistan

The Ideal: Map created in ArcGIS using raster and vector data imported into photoshop and illustrator for an aesthetic finish.

(We still have yet to do this for Bashtepa)

ArcGIS is a powerful tool for projecting and querying mass amounts of archaeological spatial data. ArcGIS, or open source alternatives such as Q-GIS, alongside AutoCAD Civil are industry standard.

Uses:

- Visualizing a site's "grid frame"
- Projecting spatial data about the excavation architectural features, small finds, soil layers and transitions, height levels,
- Measuring distance at a small and large scales
- Calculating area of features

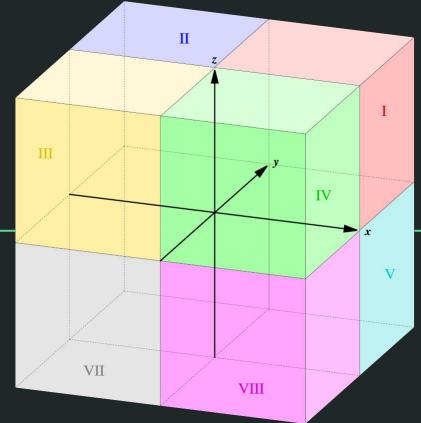
Both raster and vector maps can (and should) be anchored to longitude And longitude coordinates. Longitude and Latitude coordinates are VECTOR points. They are conceptual and not real, converging at 0, 0 in the Gulf of Guinea off the west coast of Africa. All spatial references in lat./ long. are anchored to this point.

This is ideal, but not necessary, and in some cases impractical for archaeological projects.

 Requires a GPS capable of >1cm accuracy (Trimble). NO HANDHELDS!

Archaeological Applications of ArcGIS Total Station

A scary looking, but simple piece of equipment that uses a laser and triangulation to establish points in space in relation to other points in space. Accuracy ~3mm!


- Not tied to long/lat, (more expensive models now do)
- Data must be internally coherent so the station "knows" where you are in relation to other points in space.
- This requires the establishment of an "internal" or "floating" grid."

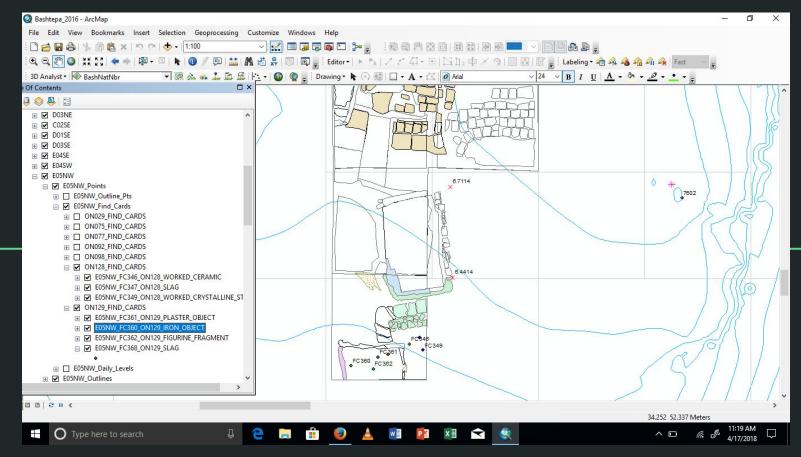
Archaeological Applications of ArcGIS Floating Grids

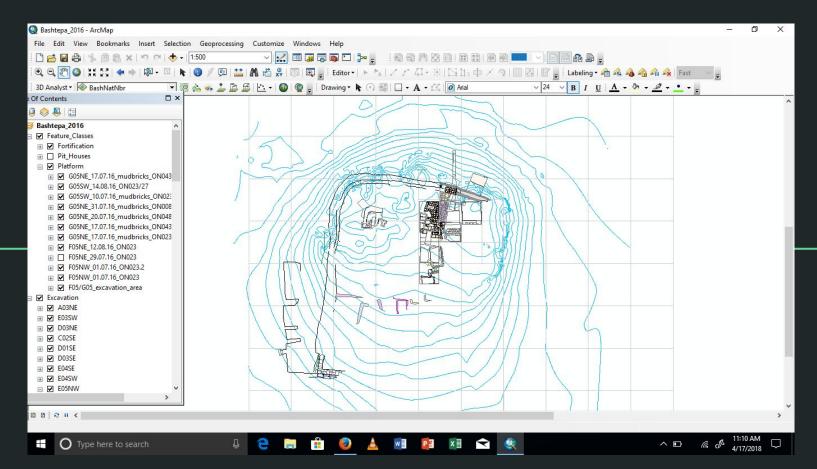
Each archaeological site requires an internally coherent data frame, known as a grid, to which all points in space, i.e. your archaeological data, are spatially referenced. Without this your documentation is irreparably flawed.

It is nothing more than an x, y, z geometric plane to which all points are measured in meters rather than lat./long.

X, Y, Z data

X = Easting Y = Northing Z = Height

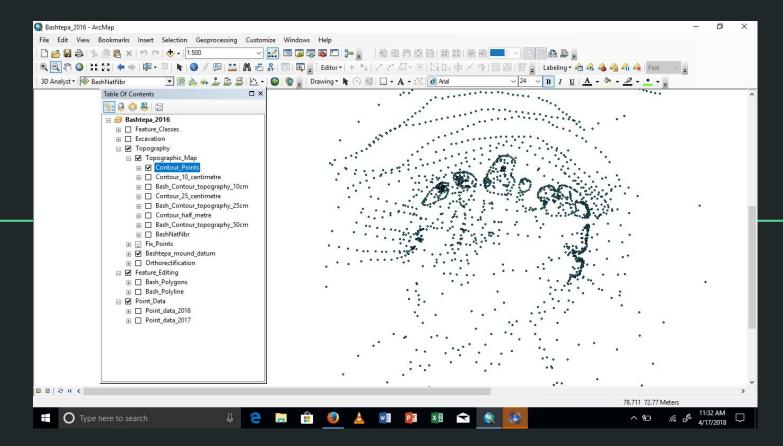

 Total Station: .txt file


ArcGIS needs

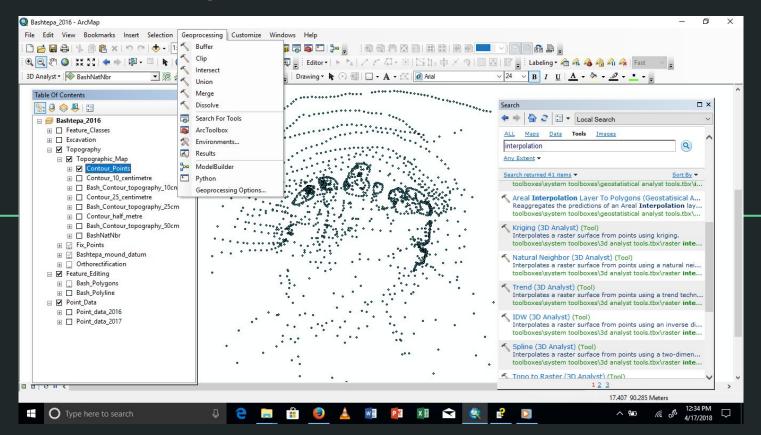
 .xml

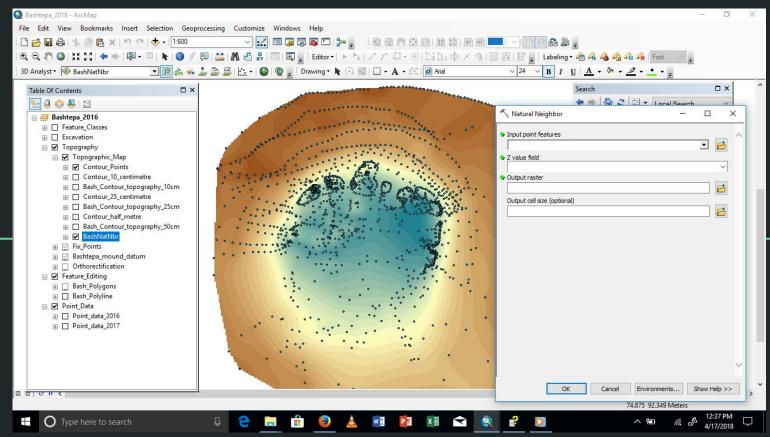
 Code point attributes in excel

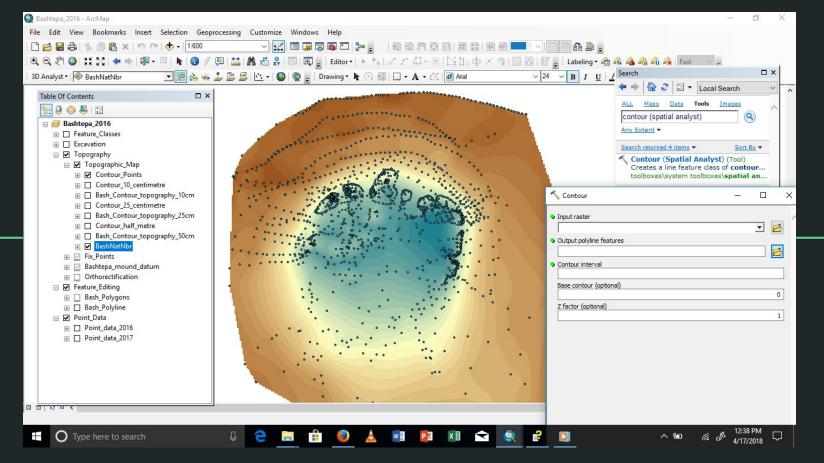
cycle Bi		*	me Inse Calibri		Layout Form	ulas Data Revie = - &	ew View General	ACROBAT	nditional Form		ou want to do	Σ
		· •		14 M			\$ - %	Por For	mat as Table -		Delete -	4
🔷 Bryn Mawr College 🛞 BiONiC 🛞 Bryn Mawr Webmail 🛞 Bi-Co Pa	ssword T	*	BIU	• 🗄 •	थ-▲- ≡		00. 0.→ 0.← 00.	Cell	Styles -		📰 Format -	1
Digital Mapping & Spatial Analysis 🔅	Clipb	bard 🗔		Font	r _a	Alignment	Number	r _a	Styles		Cells	
BASH - Notepad	C11		• I >	< v 1	50.2444							
File Edit Format View Help		A	В	С	DE	F	G	H	T	J	К	
5867,41.6537,49.9818,4.8149,OUTLINE	11	5865	41.3643	50.2444	4.8225 OUTL	NE	E05NW		ON041	28.07.17		
5868,41.8089,49.8028,4.8138,OUTLINE	12	5866	41.4902	50.1297	4.8101 OUTL	NE	E05NW		ON041	28.07.17		
5869,41.9219,49.6692,4.8207,OUTLINE	13	5867	41.6537	49.9818	4.8149 OUTL	NE	E05NW		ON041	28.07.17		
5870,42.0712,49.5275,4.8203,OUTLINE 5871,42.1651,49.4789,4.8227,OUTLINE	14	5868	41.8089	49.8028	4.8138 OUTL	NE	E05NW		ON041	28.07.17	·	
5872,42.2079,49.4904,4.8154,0UTLINE	15	5869	41.9219	49.6692	4.8207 OUTL	NE	E05NW		ON041	28.07.17		
5873,42.2009,49.6231,4.8297,0UTLINE	16	5870	42.0712	49.5275	4.8203 OUTL	NE	E05NW		ON041	28.07.17		
5874,42.2323,49.6700,4.8354,OUTLINE	17	5871	42.1651	49.4789	4.8227 OUTL	NE	E05NW		ON041	28.07.17		
5875,42.3116,49.6424,4.8386,OUTLINE	18	5872	42.2079	49.4904	4.8154 OUTL	NE	E05NW		ON041	28.07.17		
5876,42.4501,49.5344,4.8282,OUTLINE	19	5873	42.2009	49.6231	4.8297 OUTL	NE	E05NW		ON041	28.07.17		
5877,42.5582,49.4360,4.8342,OUTLINE	20	5874	42.2323	49.67	4.8354 OUTL	NE	E05NW		ON041	28.07.17		
5878,42.3955,49.7668,4.8391,OUTLINE	21	5875	42.3116	49.6424	4.8386 OUTL	NE	E05NW		ON041	28.07.17		
5879,42.2687,50.2319,4.8839,OUTLINE	22	5876	42.4501	49.5344	4.8282 OUTL	NE	E05NW		ON041	28.07.17	·	
5880,41.8487,50.3017,4.8464,OUTLINE	23	5877	42.5582	49.436	4.8342 OUTL	NE	E05NW		ON041	28.07.17		
5881,41.5469,50.2831,4.8196,OUTLINE	24	5878	42.3955	49.7668	4.8391 OUTL	NE	E05NW		ON041	28.07.17	,	
100,54.3993,57.8362,9.8565, 5882,42.0675,47.3673,5.5110,FIND	25	5879	42.2687	50.2319	4.8839 OUTL	NE	E05NW		ON041	28.07.17		
5883,41.7871,47.3602,5.4930,FIND	26	5880	41.8487	50.3017	4.8464 OUTL	NE	E05NW		ON041	28.07.17		
5884,41.5470,48.1492,5.5087,FIND	27	5881	41.5469	50.2831	4.8196 OUTL	NE	E05NW		ON041	28.07.17		
100,54.3991,57.8373,8.9134,	28	5886	42.0677	47.3705	4.5698 FIND	WORKED STONE	E05NW	FC230	ON075 LA	29.07.17		
5885,42.0652,47.3628,4.5654,	29	5887	41.7818	47.3555	4.5491 FIND	IRON OBJECT	E05NW	FC231	ON075 LA	29.07.17		
5886,42.0677,47.3705,4.5698,FIND	30	5888	41.5783	48.0419	4.5618 FIND	SLAG	E05NW	FC232	ON075 LA	29.07.17	,	
5887,41.7818,47.3555,4.5491,FIND	31	5889	41.9493	49.1792	4.6306 FIND	WORKED STONE	E05NW	FC233	ON075 LA	29.07.17		
5888,41.5783,48.0419,4.5618,FIND	32	5890	41.4423	49.4392	4.6936 FIND	SPINDLE WHORL	E05NW	FC234	ON075 LA	29.07.17	,	
		1	Sheet1	(+)					E 🔳			
<									· [-1			
	Ready	8										巴

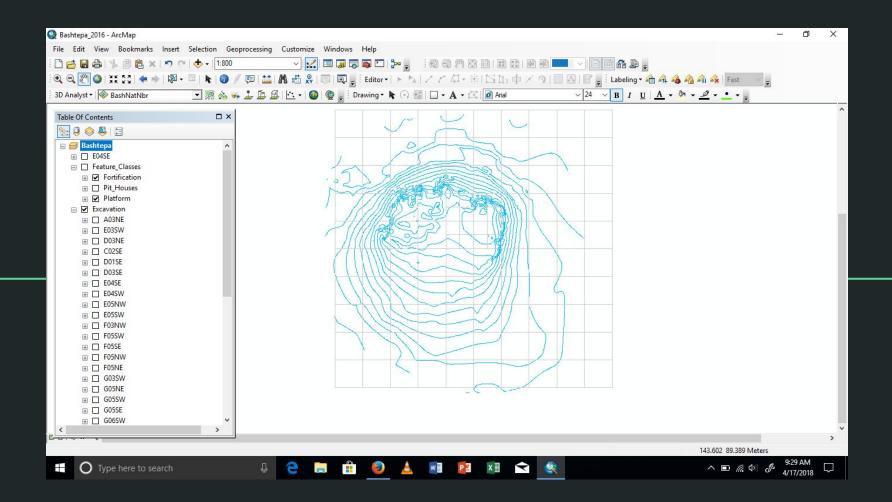

Topographic Mapping TWO DAYS FOR COLLECTING DATA - TWO MINUTES TO PROJECT !!!

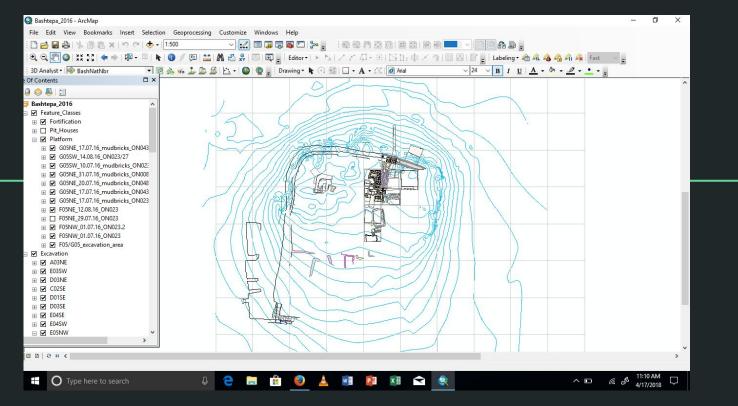
ArcGIS has several built in apps for the purpose of creating topo maps at the click of a button.


The hard work is taking the points! These number in the thousands and the work is boring.

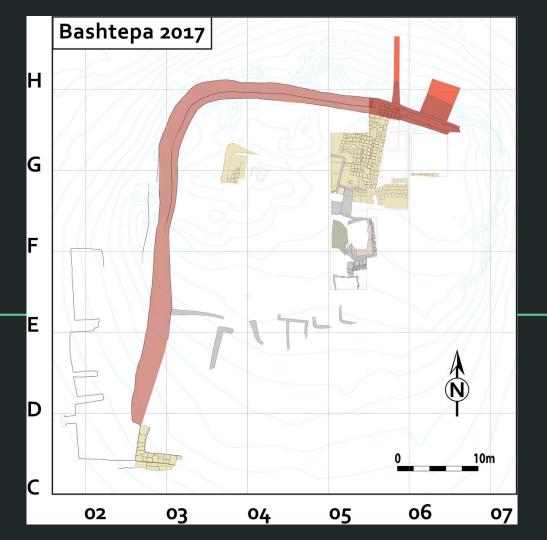





Interpolation - visualizing the spatial relationship between 3D points.


Topographic Mapping Contour Topography

Overlaying


All within the same data frame, anchored to the same grid. Just a click of a button!

Final Stage Making Your Map Publishable

ArcGIS is horrible for making aesthetically pleasing, polished Maps. Major shortcoming.

- Analytic tool, not graphic.
- Capability to import into Illustrator (vector) or Photoshop (raster).
- Many sites use AutoCAD Civil because the maps are publishable and spatially sound as you go.

Google Maps APIs: Geocoding

https://developers.google.com/maps/documentation/

Additional Resources

- <u>Mapknitter.org</u> make maps from aerial photos
- <u>Timeline.knightlab.com</u> make interactive timelines
- <u>Worldmap.harvard.edu</u> open-source GIS mapping platform

- <u>Ancient World Mapping Center</u> (Antiquity À-la-carte)
- <u>Pleiades</u> Gazeteer of Ancient Places
- Digital Atlas of Roman and Medieval Civilization (DARMC)
- Digital Atlas of the Roman Empire (DARE)
- ORBIS: <u>The Stanford Geospatial Network Model of the Roman World</u>